
Stat 515: 
Introduction to Statistics 

Chapter 10 



Designed Studies: Vocabulary 

• The response variable is the variable of 
interest to be measured in an experiment 

– Essentially this is what we would like to model or 
predict 

• Factors are the variable whose effect on the 
response is of interest 

– Essentially this is what we would like to use to 
model or predict the response 



Designed Studies: Vocabulary 

• Note: Both the response(s) and factor(s) are 
either qualitative, quantitative discrete or 
quantitative continuous just as we’ve learned 
about variables earlier in the semester. 



Designed Studies: Vocabulary 

• Factor Levels are the values of the factor 

– We most often refer to the categories that make 
up a qualitative variable as ‘levels’ 

 

• Treatments of an experiment are the factor 
level combinations utilized 



Designed Studies: Vocabulary 

• An experimental unit is the object on which 
the response and factors are observed 

– These are often, but not always people 



Designed Studies: Vocabulary 

• Recall the difference between designed 
experiments and observational studies 

• An observational study measures the response 
variable without attempting to influence the 
value of either the response or explanatory 
variables.  

• A designed study occurs when a researcher 
assigns the individuals or subjects into groups 
and intentionally affects their explanatory 
variables (think treatments) 



Example 

• C. Myrray Parkes headed a study of 4,486 men 
of 55 years of age and older who had their 
wives die in 1957. For up to nine years, these 
widowers were tracked and 213 died during 
the first six months – that’s about 5%.. 

• This experiment is a observational study. C 
Myrray Parkes didn’t murder 4,486 women in 
1957 just to do this study. 



Example 

• Herbet Benson, MD headed a study in 2005 to see if 
intercessory prayer influenced recovery from bypass 
surgery. There were three groups in the study: 1. Those 
being prayed for that didn’t know 2. Those being 
prayed for that did know 3. Those not being prayed for 

• This is a designed study because the researchers 
assigned different patients to different groups; they 
controlled who was prayed for and who wasn’t instead 
of just observing and asking the families whether or 
not they had friends and families praying for the 
patient. 



Designed Studies: Vocabulary 

• Note: both of these studies were planned but 
we only poke and prod the experimental units 
in the second study where the researched 
assigned different “treatments” to each 
patient. 



Designed Studies: Vocabulary 

• A completely randomized designed is a design 
where the treatments are randomly assigned 
to the experimental units 

 

• Note: Why we need a random sample is 
obvious by now from the need in Ch 7-9 to 
have our inference be applicable to the rest of 
the population – why the treatments need to 
be random is less obvious 



Designed Studies: Vocabulary 

• We call an experiment balanced if we assign 
the same number of experimental units to 
each treatment 



Example 

• Consider a field of plots where we plant corn  



Example 

• Here, we consider two different fertilizers and 
we want to know which works the best 



Example 

• Consider this very ‘un-random’ assortment of 
fertilizers A & B, what’s a possible drawback? 



Example 

• Perhaps, the farm house puts shade on the 
four plots to the right. In this case B would 
grow less, perhaps even if B is superior to A. 



Example 
• Consider a field with poor drainage suppose 

that the plots to the right puddled with water 
after rain. In this case B would grow less, 
perhaps even if B is superior to A 

 



Example 

• In either case, randomization would have 
helped us. Something like the randomization 
below would put A and B in both situations. 



Example 

• In either case, randomization would have 
helped us. Something like the randomization 
below would put A and B in both situations. 



Example 

• In either case, randomization would have 
helped us. Something like the randomization 
below would put A and B in both situations. 



Single Factor Design 

• In a Single Factor Design we are only 
considering one factor in the 
modeling/prediction of the response variable 

 

• We’re interested in testing 

𝐻0:  𝜇1 = 𝜇2 = ⋯ = 𝜇𝑘: The means are equal 

𝐻𝐴: At least one of the 𝜇𝑖 is different 

 



Single Factor Design: Values of Interest 

• Sum of Squares for Treatments (SST): the 
variation between the treatment means 

 

𝑆𝑆𝑇 = 𝑛𝑖 𝑥𝑖 − 𝑥 
2 

𝑛𝑖 = sample size for treatment 𝑖 
𝑥𝑖 = sample mean for treatment i 
𝑥 = sample mean overall 



Single Factor Design: Values of Interest 

• Sum of Squares for Error (SSE): the variation 
within the treatments 

 

𝑆𝑆𝐸 = 𝑥1𝑗 − 𝑥1
2
+ 𝑥2𝑗 − 𝑥2

2
+⋯+ 𝑥𝑘𝑗 − 𝑥𝑘

2
 

𝑥ij = 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑗 𝑓𝑟𝑜𝑚 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 1 
𝑥𝑖 = sample mean from treatment i 
𝑥 = sample mean overall 



Single Factor Design: Values of Interest 

• Sum of Squares for Error (SSE): the variation 
within the treatments 

 

Recalling 𝒔𝟐: 
𝑆𝑆𝐸 = 𝑛1 − 1 𝑠1

2 + 𝑛2 − 1 𝑠2
2 +⋯+ 𝑛𝑘 − 1 𝑠𝑘

2 

 

𝑛𝑖 = sample size for treatment 𝑖 

si
2 = sample variance for treatment i 

 



Single Factor Design: Values of Interest 

• Mean Square for Treatments (MST): 
measures the variation among the treatment 

 

𝑀𝑆𝑇 =
𝑆𝑆𝑇

𝑘 − 1
 

𝑆𝑆𝑇 = 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑓𝑜𝑟 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠 
𝑘 = the number of treatments 



Single Factor Design: Values of Interest 

• Mean Square for Error (MSE): measures the 
variation among the treatment 

 

𝑀𝑆𝐸 =
𝑆𝑆𝐸

𝑛 − 𝑘
 

𝑆𝑆E = 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑓𝑜𝑟 𝐸𝑟𝑟𝑜𝑟 
n = the number of experimental units 
𝑘 = the number of treatments 



Single Factor Design: Values of Interest 

• F Statistic(F): Completes the test that we’re 
interested in 

 

𝐹 =
𝑀𝑆𝑇

𝑀𝑆𝐸
 

𝑆𝑆E = 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑓𝑜𝑟 𝐸𝑟𝑟𝑜𝑟 
n = the number of experimental units 
𝑘 = the number of treatments 



Single Factor Design: Values of Interest 

𝐻0:  𝜇1 = 𝜇2 = ⋯ = 𝜇𝑘: The means are equal 

𝐻𝐴: At least one of the 𝜇𝑖 is different 

Assumptions: 1) Samples are randomly selected  

                          2) The k distributions are normal 

                          3) 𝜎1 = 𝜎2 = ⋯ = 𝜎𝑘 

Test Statistic: 𝐹 =
𝑀𝑆𝑇

𝑀𝑆𝐸
 

Reject when: 𝐹 > 𝐹1−𝛼 = 𝑞𝑓(1 − 𝛼, 𝑘 − 1, 𝑛 − 𝑘) 



Example 

• Suppose we have the following results for 
corn yield (in bushels) per plot of land with 
either fertilizer A or fertilizer B 



Example 

• 𝑥𝐴 = 99.25 

• 𝑥𝐵 = 103 

• 𝑠𝐴
2 = 9.58333 

• 𝑠𝐵
2 = 10 

 

 

 



Example 

• In this case we’re only considering one factor: 
fertilizer which has two levels A and B. 

 

• We’re interested in testing 

𝐻0:  𝜇𝐴 = 𝜇𝐵 ∶ The fertilizer work equally 

𝐻𝐴:  𝜇𝐴 ≠ 𝜇𝐵: The fertilizer don’t work equally 

 

 



Example 

𝑆𝑆𝑇 =  𝑛𝑖 𝑥𝑖 − 𝑥 
2  

= 4 99.25 − 101.125 2 + 4 103 − 101.125 2  

= 28.125  

 



Single Factor Design: Values of Interest 

𝑆𝑆𝐸 = 𝑛𝐴 − 1 𝑠𝐴
2 + 𝑛𝐵 − 1 𝑠𝐵

2   

         = 4 − 1 9.58333 + 4 − 1 10 

         = 58.7499  



Single Factor Design: Values of Interest 

𝑀𝑆𝑇 =
𝑆𝑆𝑇

𝑘 − 1
=
28.125

2 − 1
= 28.125 



Single Factor Design: Values of Interest 

𝑀𝑆𝐸 =
58.7499

8−2
= 9.79165  



Single Factor Design: Values of Interest 

𝐹 =
𝑀𝑆𝑇

𝑀𝑆𝐸
=
28.125

9.79165
= 2.872345  



Single Factor Design: Values of Interest 

Reject when: 𝐹 > 𝐹1−𝛼 = 𝑞𝑓(1 − 𝛼, 𝑘 − 1, 𝑛 − 𝑘) 

𝐹=2.872345 

𝐹1−𝛼 = qf(.95,2-1,8-2)=5.987378 

 

2.872345<5.987378 so we reject the null 
hypothesis in favor of the alternative. 

 

Note: our pvalue agrees with this decision 



In R 

plotYield<-c(102,101,95,99,102,99,106,105) 

fert<-c('A','A','A','A','B','B','B','B') 

farming<-lm(plotYield~fert) 

summary(farming) 

anova(farming) 

 

• This gives us the F statistic and the associated 
pvalue, along with other measurements 



In R 

summary(farming) 



In R 

anova(farming) 

 


